
International Journal of Theoretical Physics, VoL 35, No. 8, 1996 

Invariants of Topological Quantum Mechanics 
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We investigate a new topological invariant of the punctured plane using a 
Hamiltonian approach. The Hamiltonian is built out of topological invariants 
available on the punctured plane. On the other hand it is shown that the model 
is a generalized version, using the appropriate language of homotopy, of the 
superconformal quantum mechanics (gauge approach) recently proposed by L. 
Baulieu et al. This relationship allows a better understanding of the structure and 
results of the gauge approach and makes possible a proper identification of the 
topological invariants which emerge from it. 

1. I N T R O D U C T I O N  

Baulieu and Rabinovici (1993) investigated superconformal quantum 
mechanics. The punctured plane was chosen as the target space on which 
closed trajectories around the hole were selected. The motivation of the 
authors behind the study of  loops in the punctured plane was to understand 
the mechanism of  supersymmetry breaking, which could provide nonvan- 
ishing mean values to topological observables which are BRST-exact, and 
this is an open question of  current interest (Myers, 1990). The system consid- 
ered has a nontrivial but simple topology, characterized by the winding 
number of  the loops. The model is thus a supersymmetric quantum mechanical 
system defined on the punctured plane. Like any supersymmetric quantum 
mechanical action, it can be regarded as a topological action (Witten, 1988a-c; 
see Birmingham et  al., 1991, for review) by a Wick rotation. The use of  local 
BRST invariance (Baulieu and Arago de Carvalho, 199 la,b; Birmingham et  

al., t990; Birmingham and Rakowski, 1989; Delduc et al., 1989) input, 
although not a physical principle, allows the authors to select a superconformal 
potential which turns out to be solvable and possess interesting properties. 
The striking feature of the spectrum obtained is that it has no admissible 
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normalizable ground state (E = 0). The supersymmetry is thus broken without 
the presence of a dimensioned parameter and this opens the possibility to 
have nonvanishing mean values of BRST-exact observables. Note that this 
type of supersymmetric breaking is shown not to be true at one spatial 
dimension and requires a special choice of the potential in two dimensions. 
However, the way the invariants emerged from the formalism makes their 
identification ambiguous, as they are written in terms of BRST charges and 
ghost fields. A first but not very satisfying attempt was made by Baulieu 
and Rabinovici (1993) to connect some of the invariants to the superconfor- 
mal generators. 

The aim of the present paper is first to identify the topological invariants 
of the punctured plane, a subject of particular interest in itself. The procedure 
is an intrinsic and direct study of their existence using only topological 
information available on the punctured plane. The model we propose is not 
a gauge theory, but a quantum mechanical system whose Hamiltonian is built 
out of topological operators only (Hu, 1959; Maunder, 1979; Balachandran 
e t  al. ,  1991). These operators are the winding number and the fundamental 
group of homotopy. The model is solvable and is in fact, as we shall see, 
another generalized version of the gauge field model, but interpreted in 
the language of homotopy in which gauge transformations correspond to 
homotopic deformations. It allows, in addition to a proper identification of 
observables in the gauge model, the possibility of making certain results of 
the gauge approach more plausible, such as the number of well-defined 
invariants (there are too many ill-defined invariants), the necessary dimension 
two and not one of the target space (Fubini and Rabinovici, 1984; de Alfaro 
e t  al., 1976) and the special choice of the coupling constant of the superconfor- 
real potential. 

The rest of the paper is organized as follows. First we summarize the 
main results of Baulieu and Rabinovici (1993). Then we describe our model 
in detail, and finally we conclude with a comparative study in which we 
emphasize the features common to both models and end up with the identifica- 
tion of the observables. 

2. THE GAUGE FIELD APPROACH 

The topological classical action of interest is the closed-form integral 

Sc,[q] = [3 ~ dO 

Eq(]iqj = ~ d ~  q--~- 

(1) 

(2) 



Invariants of Topological Quantum Mechanics 1711 

where 13 is a real coupling constant, the qi are the Cartesian coordinates, and 
0 is the polar coordinate. This action is a measure of  the winding number 
of the corresponding loop up to the constant 13. The Hamiltonian associated 
to this action is zero, however, as the corresponding Lagrangian is first 
order in q. The above action, on the other hand, is invariant under the 
gauge symmetry 

q(t) ---> q(t) + ¢(t) (3) 

where e(t) is any local shift of the particle position q(t) which does not 
change the winding number of  the trajectory. To gauge fix this action with 
a quadratic dependence on the velocity /1 one chooses a gauge function of  
the form qi + ~V/~qi,  where the potential is an arbitrary function. To get 
interesting topological information one has recourse to local BRST symmetry, 
which selects the (super)conformal potential of  the form 

132 
(4) 

2q 2 

As an illustration we give the Hamiltonian thus obtained: 

1 t-z=  Q,-Ol 

i, o 0 ) = - - -  t - -  - 13 ( 5 )  
Or r 

where the fields O(t) are the topological ghosts associated with the particles 
positions q(t) and Q is the BRST charge. The eigenstates of the Hamiltonian 
are labeled by their nonnegative energies E, angular momentum n, and the 
ghost number et, with et = 1, 2, 3, 4, and are denoted I E, n, et). 

The topological invariants in this model are defined in terms of  BRST 
charges and ghost (antighost) fields. The candidates for such invariants are 
(from dimensional arguments for the first two) 

{Q, r+0} = {Q, r~0}* 

{Q, r~r} = {9, rt~r} t 

A = T r ( - )  r exp(-3 ,H)  (6) 

where (--)F is the ghost or fermion operator, Tr means trace over E, n, and 
~, is a constant. The mean value of  the first operator between any normalized 
state I d~,,) = J" dE p(E) t E, 17) is, independent of the weighting function p(E), 
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(4,,I {Q, r~e} lqb,,) = n + i[3 (7) 

The second and the third (presumed) invariants in equation (6) turn out to 
be ill defined, the second was rejected by the above authors, and the third 
one, the Witten index (Witten, 1982; Alvarez Gaum6, 1983; Friedan and 
Windey, 1984; Alvez et al., 1985; Akhoury and Comtet, 1984), is somehow 
"regularized." The latter "observable" has no analog in our approach, which 
incorporates only even objects. The Witten index counts by definition the 
relative number of bosonic and fermionic zero-energy modes. The gauge 
approach therefore contains effectively only one well-defined topological 
invafiant. 

3. THE H O M O T O P Y  G R O U P  A P P R O A C H  

The aim of our investigation is to work out the possible topological 
invariants of the punctured plane starting from well-defined invariants such 
as the winding number and the homotopy group operators. Our strategy is 
to look at loops on the plane as intrinsic "physical" objects subject to interac- 
tions with an external background field and having well-defined self-interac- 
tions as well. The external field is assumed to couple directly to the winding 
charges. Let In) be the state of the loop with winding charge n. Denote by 
W the winding number operator and I-I(n), n ~ Z, an element of the homotopy 
group of the punctured plane which is isomorphic to the set of integer Z. We 
then have the defining relations 

Win) = nln)  

H(n) Ira) = e i"~ In + m) 

(nlm) = ~n,. 

~,  I n)(nl = 1 (8) 
n ~ Z  

In the following we set ~ = 0 without loss of generality. Let us first consider 
the interaction of loops with the external field which couples to the winding 
charges in a more general way as 

H0 = g(W) (9) 

The interaction with the external field makes the in) states evolve in time 
in such a way that they may lose their loop structure. This is made possible 
through the extra phase factor exp[-ig(n)t]  they get from the Hamiltonian 
in equation (9). The necessary and sufficient condition for the loops to keep 
their structure with time (i.e., in the presence of the background field) is that 



Invariants of Topological Quantum Mechanics 1713 

the action of the II operators on the evolved states remains unchanged up 
to a phase, 

H(m) 112, t) = exp[-ig(n)t] II(m) ln) 

= exp{-i[g(n)  - g(n + m)]t} In + m, t) (10) 

For this to happen we require that the function g be linear, i.e., g(n) = fSn, 

H(m) t n, t) = exp(i13mt) I n + m, t) ( l  l ) 

The external field is then assumed to couple linearly to the winding charge 
in order not to affect the loop structure. A quadratic coupling 13 W2, for 
instance, would be insensitive to oriented loops and hence get missed. We 
thus have 

H0 = 13W (12) 

The real number 13 represents the strength of the field coupling. Now the 
most general interaction terms one may add to the Hamiltonian H0 and which 
describe loop self-interactions in the presence of the background field would 
have the form 

~] k([3, n, rn)WmII(n) (13) 
n,m~Z,nq:O,m~O 

Note that higher powers of the H are already included using the group 
property H"(m) = H(nm) and also that the commutation relations [W, H(m)] 
= mH(m) which we may deduce from equations (8) have been used to move 
all W's to the left of the II's. Recall that our main concern here is to look 
for new topological invariants which live on the punctured plane. The general 
interaction introduced above may lead, in the manner of nonlinear couplings 
to the external field, to states having nothing to do with loops. In order to 
capture possible intrinsic topological configurations as a result of the above 
interactions we must select the appropriate ones. For this purpose we only 
keep the II terms [m = 0 in equation (13)] and factorize the k function as 
follows: h(13, n) = 13h(n). This coupling function is further subject to the 
Hermiticity constraint h * ( - n )  = h(n). The final selected Hamiltonian which 
incorporates loop self-interactions in the presence of an external background 
without breaking the loop structure has the very simple form 

H(13, k) = 13Wx 

W× = W + ~ k(n)[l(n)  (14) 
nEZ 

The form of the selected Hamiltonian is analogous to that of the Hamiltonian 
H0 which describes the coupling of the external field to loops without self- 
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interactions. We therefore see that in the presence of loop self-interactions 
the external field couples in fact to new charges: effective charges whose 
values are not necessarily integers. We will call this new observable the 
effective winding number and denote it Wx. 

What kind of states are the eigenstates of this new object. First we solve 
for the eigenvalue problem. The solutions are exact (not perturbative) and 
are of the form 2 

In~,>=exp[- ~ h(m-----~)l-I(m)] In> (15) 
rn~Zl{O} m 

For the series above to converge a judicious choice of the function k is 
necessary subject to the Hermiticity requirement. One can also compute the 
eigenvalues of the effective winding number operator and show that they are 
related to the integer winding numbers through a simple relation in which 
only the values of the coupling function at m = 0 contributes to the spectrum: 

nx = n + k(O) (16) 

It is not useful in the present analysis to keep an m-dependent function k, 
we but restrict ourselves to the simplest convergent case, h ( m )  = h. This 
reduces the expression of the states I nx) to the compact and suggestive form 

I nx) = e-ilXln> 

II(m) 
J = - i  ~ (17) 

m~z/101 m 

The fact that the new states Ins) are the unitary transform of the old 
ones (J is Hermitian) and that the spectrum undergoes just a constant shift 
means that the physics is unaffected by the introduction of the above specific 
loop self-interaction. It is merely a change of basis. 

Before proceeding to show the formal resemblance of both approaches 
and identify the invariants, we want to be complete and show that the newly 
defined states possess interesting properties. First, they reduce to old states 
In) up to a phase when the coupling h takes integer values, 

Inx>x=m = (--l)mln + m> (18) 

Second, although they are not eigenstates of the winding number operator, 
the state In×) still carries the winding charge n on average, that is, 

ZThese states together with the defining equation (15) are fundamental, as they constitute 
topological building blocks of Bessel functions (Mekhfi0 n.d.). 
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(nxl Wlnx) = n (19) 

Third, these states are a basis for the representation space of the Wx and II 
operators, that is, 

Wxtnh) = (n + h) lnx) 

lq(m) lnx) = l(n + m)x) (20) 

It is the second equation in (20) which is in fact behind the choice of the 
type of interactions of loops we adopted, namely the interaction does not 
destroy the loop structure. The second and the third properties are straightfor- 
ward. To see how the first property occurs, we convert to the one-dimensional 
irreducible representations of  the fundamental group II - Z. We denote these 
representation states l a)  and define them as follows: 

II(m)lot) = e - i " ~ ' l a } ,  0 < a --< 2"rr (21) 

The representations In) and l a)  are related to each other through the Fou- 
rier transform 

I? In) = l ot)e_i, ,~ de t  (22) 
2"rr 

Using the above formula, we can write the new states in the integral form 

l nx} = e -i ' tx I o~)e -i'~'~ doL 
2"rr 

= I o ~ ) e x p - X  ~ e m e -ina 
mEZ/[0} 

Ii  :~ da  
= e - i x ~  e - i ( n + h ) a -  l a)  (23) 

2-rr 

To perform the last step we made use of the result 

e -  imet 
- i(a - -tr) (24) 

, ,ez / (o}  m 

Now that we have defined the effective winding number operator Wx as the 
new topological invariant of the punctured plane and studied its spectrum 
and the properties of its associated eigenvectors, it is appropriate to make a 
comparative study of  both approaches and ultimately identify Wx with the 
unique well-defined topological invariant of the gauge model. For this we 
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need to compute the mean value of our invariant on the In) basis, as the 
states Inx) do not enter the analysis of the other approach. We have 

(hi W~,ln) = (nl Win) + X ~] (nlI-l(m) ln) 
m ~ Z 

= n + h (25) 

4. A COMPARATIVE STUDY 

As we briefly sketched in Section 2, one starts in the gauge model with 
a topological action which is a measure of the winding number of the closed 
configuration times 27r[3, with [3 being a coupling constant. In the homotopy 
group approach one starts with a Hamiltonian which describes the (linear) 
coupling of an external field to the winding charges. The coupling is chosen 
on the basis that the field does not destroy the loop structure of the system, 

13 I dO ¢:~ [3W (26) 

The topological action in equation ( 1 ), written in terms of the coordinates qi 
[see equation (2)], exhibits a gauge symmetry invariance, but as it stands it 
exhibits rather invariance under the homotopy group deformations, that is, 
the n-preserving deformations of closed configurations. We thus have 

q --~ q + • ¢~ Homotopic deformation (27) 

Gauge fixing a symmetry breaks the latter in such a way that the physics is 
not affected. In the process of gauge fixing topological theories, different 
potentials all equally possible may be introduced. In the above gauge model 
local BRST input is necessary in order to get topological invariants. It allows 
us to select a (super) conformai potential. The coupling constant of the 
associated potential turns out to be necessarily the square of the coupling 
constant 13 already introduced into the unfixed action. Only in this case do 
well-defined topological invariants emerge. In the homotopy group model, 
an interaction of a special type has been introduced into the Hamiltonian, 
the selection criterion being that the introduced potential does not affect the 
loop structure. This requirement has the important consequence that it leads 
to a mere change of basis. This change of basis did not affect the physics 
[see equations (16) and (17)] and this is what mimics the gauge fixing in the 
gauge approach. As for the gauge model, in order to capture new topological 
invariants, the coupling constant should necessarily be proportional to the 
external field strength [3. This last requirement is the same for both models, 
except that the proportionality constant h is here arbitrary and not necessarily 
equal to [3. We thus have the set of similarities 
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No ground state ¢:* No ground state 

I+.) In) 

No room ¢=~ I nx) 

Interactions fix the gauge ¢:0 Interactions change the basis 

132 q2 ¢* 13h1-I(0) 

No room ¢:~ 13h ~ II(m) 
m~Zl{O} 

(+.134/'1+.) = n + i13 ¢:* ( n l W ~ l n )  = n + k (28) 

where ~ = {Q, r~0} and where the I+,,) states are the states on which 
the topological observables effectively act, and "no-room" corresponds to 
nonpreserving winding number potentials which are not incorporated into 
the present gauge model. All necessary conditions to generate well-defined 
topological invariants have been taken in both models. We thus have the 
following identifications: 

No room -- Nondiag W~ (29) 

where Diag corresponds to the diagonal part of the operator. The identification 
of the invariant W and Diag Wp operators means that both operators are 
different representations of the same object. The representation spaces are 
spanned respectively by the states I qb,,) and In). The fact that there is no 
room for the nondiagonal part of W~ or of II(m) in the gauge approach is 
due to the absence in the model of winding-number-changing amplitudes. In 
other words, the gauge model based on the simple action of equation (1) is 
comparable to our model in its simplest version of simple non-self-interacting 
loops on the background of an external field to which they couple through 
the general linear coupling allowed, as the function g(n)  in (10) may have 
the general form g(n)  = 13n + h, 

[3W + h (30) 

in which one puts 13 = h. This suggests that the gauge model needs nontrivial 
generalizations to incorporate the nondiagonal parts. The above comparative 
study shows that such a generalization is necessary and also gives insight 
on the way to do it. The generalization of the action in equation (1) to include 
winding-number-changing amplitudes is considered and solved in a parallel 
study to appear in a forthcoming paper (Mekhfi, 1995). 
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